If it's not what You are looking for type in the equation solver your own equation and let us solve it.
132=-16t^2+96t+4
We move all terms to the left:
132-(-16t^2+96t+4)=0
We get rid of parentheses
16t^2-96t-4+132=0
We add all the numbers together, and all the variables
16t^2-96t+128=0
a = 16; b = -96; c = +128;
Δ = b2-4ac
Δ = -962-4·16·128
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-32}{2*16}=\frac{64}{32} =2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+32}{2*16}=\frac{128}{32} =4 $
| h-9/2=5 | | 3(5+a=21+5a | | .0.2x+4=1.2x+8 | | -2.4-x=4.9 | | -8-x=48 | | 8−6j=–8j | | 2x+3-x=4x+6 | | -5=1+0n-3n | | 0,04=1/8*4-0,5x | | 81=-63-12x | | -3b=6-10b | | -8-3b=6-10b | | -108=-8(4+8n)-1 | | 8=b-2.7 | | -x-3=30 | | –8−3b=6−10b | | -6(m+4)=48 | | 9-8h=-7h | | 4.9x^2-17x=0 | | 4y+1=51 | | x=33/3100/2+32-120/4 | | 11x+2=14x-13=180 | | 3(3x+2)–12=6x+9 | | 11x+2=14x-13 | | 8=-5x+2x | | 3x+8=9x4 | | -13=5-4a | | 6=-5+2x | | 5x=x+112 | | -2g-10=2g+10 | | 81=-63-12x | | 0.4=0,30x |